Mostrar el registro sencillo del objeto digital

dc.contributor.author Cervantes Canales, Jair
dc.contributor.author García Lamont, Farid
dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author RUIZ CASTILLA, JOSE SERGIO
dc.creator Cervantes Canales, Jair; 101829
dc.creator García Lamont, Farid; 216477
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator RUIZ CASTILLA, JOSE SERGIO; 231221
dc.date.accessioned 2018-09-21T22:25:11Z
dc.date.available 2018-09-21T22:25:11Z
dc.date.issued 2016
dc.identifier.isbn 978-3-319-42293-0
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/20.500.11799/94750
dc.description Se calcula la cantidad de grupos en que los vectores de color son agrupados usando fuzzy c-means es
dc.description.abstract Fuzzy C-means (FCM) is one of the most often techniques employed for color image segmentation; the drawback with this technique is the number of clusters the data, pixels’ colors, is grouped must be defined a priori. In this paper we present an approach to compute the number of clusters automatically. A competitive neural network (CNN) and a self-organizing map (SOM) are trained with chromaticity samples of different colors; the neural networks process each pixel of the image to segment, where the activation occurrences of each neuron are collected in a histogram. The number of clusters is set by computing the number of the most activated neurons. The number of clusters is adjusted by comparing the similitude of colors. We show successful segmentation results obtained using images of the Berkeley segmentation database by training only one time the CNN and SOM, using only chromaticity data. es
dc.language.iso eng es
dc.publisher Springer es
dc.rights openAccess
dc.rights.uri http://creativecommons.org/licenses/by/4.0
dc.subject Color characterization es
dc.subject Color spaces es
dc.subject Competitive neural networks es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Computing the number of groups for color image segmentation using competitive neural networks and fuzzy c-means es
dc.type Capítulo de Libro
dc.provenance Científica
dc.road Dorada
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.progEstudios 663 es
dc.audience students
dc.audience researchers
dc.type.conacyt bookPart
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Computing the number of groups for color image segmentation using competitive neural networks and fuzzy c-means
  • Autor
  • Cervantes Canales, Jair
  • García Lamont, Farid
  • LOPEZ CHAU, ASDRUBAL
  • RUIZ CASTILLA, JOSE SERGIO
  • Fecha de publicación
  • 2016
  • Editor
  • Springer
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Color characterization
  • Color spaces
  • Competitive neural networks
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas