Mostrar el registro sencillo del objeto digital
dc.contributor.author | Cervantes Canales, Jair | |
dc.contributor.author | García Lamont, Farid | |
dc.contributor.author | LOPEZ CHAU, ASDRUBAL | |
dc.contributor.author | RUIZ CASTILLA, JOSE SERGIO | |
dc.creator | Cervantes Canales, Jair; 101829 | |
dc.creator | García Lamont, Farid; 216477 | |
dc.creator | LOPEZ CHAU, ASDRUBAL; 100664 | |
dc.creator | RUIZ CASTILLA, JOSE SERGIO; 231221 | |
dc.date.accessioned | 2018-09-21T22:25:11Z | |
dc.date.available | 2018-09-21T22:25:11Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-3-319-42293-0 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11799/94750 | |
dc.description | Se calcula la cantidad de grupos en que los vectores de color son agrupados usando fuzzy c-means | es |
dc.description.abstract | Fuzzy C-means (FCM) is one of the most often techniques employed for color image segmentation; the drawback with this technique is the number of clusters the data, pixels’ colors, is grouped must be defined a priori. In this paper we present an approach to compute the number of clusters automatically. A competitive neural network (CNN) and a self-organizing map (SOM) are trained with chromaticity samples of different colors; the neural networks process each pixel of the image to segment, where the activation occurrences of each neuron are collected in a histogram. The number of clusters is set by computing the number of the most activated neurons. The number of clusters is adjusted by comparing the similitude of colors. We show successful segmentation results obtained using images of the Berkeley segmentation database by training only one time the CNN and SOM, using only chromaticity data. | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights | openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | |
dc.subject | Color characterization | es |
dc.subject | Color spaces | es |
dc.subject | Competitive neural networks | es |
dc.subject.classification | INGENIERÍA Y TECNOLOGÍA | |
dc.title | Computing the number of groups for color image segmentation using competitive neural networks and fuzzy c-means | es |
dc.type | Capítulo de Libro | |
dc.provenance | Científica | |
dc.road | Dorada | |
dc.organismo | Centro Universitario UAEM Texcoco | es |
dc.ambito | Internacional | es |
dc.cve.progEstudios | 663 | es |
dc.audience | students | |
dc.audience | researchers | |
dc.type.conacyt | bookPart | |
dc.identificator | 7 |