Mostrar el registro sencillo del objeto digital
dc.contributor.author | CAPULIN PEREZ, FELIX | |
dc.contributor.author | OROZCO ZITLI, FERNANDO | |
dc.contributor.author | LARA MEJÍA, MIGUEL ANGEL | |
dc.date.accessioned | 2019-02-28T19:50:13Z | |
dc.date.available | 2019-02-28T19:50:13Z | |
dc.date.issued | 2018-12-07 | |
dc.identifier.issn | 0139-9918 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11799/99221 | |
dc.description | ARTICULO DE INVESTIGACIÓN EN EL TEMA DE FUNCIONES DE TAMAÑO FUERTE | es |
dc.description.abstract | Let X be a continuum. The n-fold hyperspace Cn(X), n < 1, is the space of all nonempty closed subsets of X with at most n components. (t). In this paper we show that the following properties are sequential decreasing strong size properties: being a Kelley continuum, local connectedness, continuum chainability and, unicoherence. Also we prove that indecomposability is an almost sequential decreasing strong size property. | es |
dc.description.sponsorship | CONACYT | es |
dc.language.iso | eng | es |
dc.publisher | MATHEMATICA SLOVAKA | es |
dc.relation.ispartofseries | 68; | |
dc.rights | embargoedAccess | es |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | es |
dc.rights | embargoedAccess | es |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | es |
dc.subject | Research Subject Categories::MATHEMATICS | es |
dc.subject | CONTINUUM | es |
dc.subject | N-FOLD HYPERSPACE | es |
dc.subject | STRONG SIZE PROPERTY | es |
dc.title | SEQUENTIAL DECREASING STRONG SIZE PROPERTIES | es |
dc.type | Artículo | es |
dc.provenance | Científica | es |
dc.road | Dorada | es |
dc.organismo | Ciencias | es |
dc.ambito | Internacional | es |
dc.cve.CenCos | 21901 | es |
dc.modalidad | Reporte de Aplicación de Conocimientos | es |