Mostrar el registro sencillo del objeto digital

dc.contributor.author Pérez, Gerardo
dc.contributor.author VALDOVINOS ROSAS, ROSA MARIA
dc.contributor.author J. Raymundo, Marcial Romero
dc.contributor.author Romero-Huertas, Marcelo
dc.contributor.author ALEJO ELEUTERIO, ROBERTO
dc.contributor.author Santibañez, Monica
dc.date.accessioned 2019-03-07T00:36:12Z
dc.date.available 2019-03-07T00:36:12Z
dc.date.issued 2018-01-11
dc.identifier.issn 15480992
dc.identifier.uri http://hdl.handle.net/20.500.11799/99404
dc.description.abstract On-line learning is a training paradigm that allows the processing of constant data flows, so that learning adapts to new knowledge. However, due to the nature of the study problem, it is possible that in the clustering obtained there are data complexities (outliers, atypical patterns, noisy, etc.) that deteriorate the performance of the model in the classification stage. Due to the above, an alternative to cope data complexities is the use of algorithms that allow to detect reject options to filter noisy pattern. In this research the neighborhood-based reject option is implemented in an on-line learning process, with the intention of improving the clustering quality and thus increasing the precision indexes obtained with the nearest neighbor's rule in the classification stage. Likewise, to validate the quality of the clustering generated, internal and external analysis metrics areused. The experimental results show the viability of the proposal when analyzed on real data. es
dc.language.iso spa es
dc.publisher IEEE es
dc.rights closedAccess es
dc.rights https://creativecommons.org/licenses/by-nc/4.0/ es
dc.rights closedAccess es
dc.rights https://creativecommons.org/licenses/by-nc/4.0/ es
dc.subject On-line Learning es
dc.subject Rejection Option es
dc.subject Data Mining es
dc.subject Preprocessing data es
dc.subject Clustering es
dc.title On-Line Learning With Rejection Option es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Ingeniería es
dc.ambito Internacional es
dc.cve.CenCos 20501 es
dc.cve.progEstudios 1009 es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • On-Line Learning With Rejection Option
  • Autor
  • Pérez, Gerardo
  • VALDOVINOS ROSAS, ROSA MARIA
  • J. Raymundo, Marcial Romero
  • Romero-Huertas, Marcelo
  • ALEJO ELEUTERIO, ROBERTO
  • Santibañez, Monica
  • Fecha de publicación
  • 2018-01-11
  • Editor
  • IEEE
  • Tipo de documento
  • Artículo
  • Palabras clave
  • On-line Learning
  • Rejection Option
  • Data Mining
  • Preprocessing data
  • Clustering
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

Buscar en RI


Buscar en RI

Usuario

Estadísticas