Mostrar el registro sencillo del objeto digital

dc.contributor.author Vazquez, Eder
dc.contributor.author García-Hernández, Rene Arnulfo
dc.contributor.author Ledeneva, Yulia
dc.date.accessioned 2019-03-16T00:35:50Z
dc.date.available 2019-03-16T00:35:50Z
dc.date.issued 2018-07-27
dc.identifier.issn 1064-1246
dc.identifier.uri http://hdl.handle.net/20.500.11799/99739
dc.description.abstract Preprocessing, term selection, term weighting, sentence weighting, and sentence selection are the main issues in generating extractive summaries of text sentences. Although many outstanding related works only are focused in the last step, they show sophisticated features in each one. In order to determine the relevance of the sentences (sentence selection step) many sentence features have been proposed in this task (in fact, these features are related to all the steps). Recently, some good related works have coincided in the same features but they present different ways for weighting these features. In this paper, a method to optimize the combination of previous relevant features in each step based on a genetic algorithm is presented. The proposed method not only outperforms previous related works in two standard document collections, but also shows the relevance of these features to this problem. es
dc.language.iso eng es
dc.publisher Journal of Intelligent & Fuzzy Systems es
dc.rights embargoedAccess es
dc.rights No aplica es
dc.rights embargoedAccess es
dc.rights No aplica es
dc.subject Extractive text summarization es
dc.subject genetic algorithms es
dc.subject sentence feature selection es
dc.subject fitness function es
dc.title Sentence Features Relevance for Extractive Text Summarization using Genetic Algorithms es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Unidad Académica Profesional Tianguistenco es
dc.ambito Internacional es
dc.cve.CenCos 31201 es
dc.cve.progEstudios 6145 es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Sentence Features Relevance for Extractive Text Summarization using Genetic Algorithms
  • Autor
  • Vazquez, Eder
  • García-Hernández, Rene Arnulfo
  • Ledeneva, Yulia
  • Fecha de publicación
  • 2018-07-27
  • Editor
  • Journal of Intelligent & Fuzzy Systems
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Extractive text summarization
  • genetic algorithms
  • sentence feature selection
  • fitness function
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

Buscar en RI


Buscar en RI

Usuario

Estadísticas