Here we report the enhanced light penetration and mass transfer efficiency of photocatalytic foams to convert
CO2 to CO. The viability of utilizing a metallic foam as a model photocatalyst support is used to evaluate the
photochemical and thermochemical reverse water gas shift reaction catalyzed by photoactive indium oxide
hydroxide nanorods uniformly coated on nickel foams. A light-enhanced CO production rate up to 130% higher
than the dark CO production was achieved through enhanced light penetration. A remarkably high thermo-
chemical CO production rate of 0.75 mmol gcat 1 h 1 was achieved at 295 ◦C. Whilst several approaches to
optimization of photocatalyst morphology at the nanoscale have been successful in extending electron hole-pair
lifetime and modifying the site of reactions, these advantages cannot be significantly realized unless microscale
to macroscale structuring efforts, that shorten the path length for diffusion of the reactant gas molecule and
lengthen photon penetration to these catalytic sites are integrated. The superior catalytic performance of the
indium oxide hydroxide nanorods on an optimized coated foam configuration compared to the performance of
packed bed and thin film configurations demonstrates the critical importance of using structured supports in
scale up of future photocatalytic processes
Descripción:
Es un artículo científico publicado en el Journal of Chemical Engineering.
Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess