Mostrar el registro sencillo del objeto digital

dc.contributor.author Hurtado, Lourdes
dc.contributor.author Mohan, Abhinav
dc.contributor.author Ulmer, Ulrich
dc.contributor.author Natividad, Reyna
dc.contributor.author Tountas, Athanasios
dc.contributor.author Sun, Wei
dc.contributor.author Wang, Lu
dc.contributor.author Kim, Boeun
dc.contributor.author Sain, Mohini
dc.contributor.author Ozin, Geoffrey
dc.date.accessioned 2022-02-10T03:48:45Z
dc.date.available 2022-02-10T03:48:45Z
dc.date.issued 2022-01-30
dc.identifier.uri http://hdl.handle.net/20.500.11799/112152
dc.description Es un artículo científico publicado en el Journal of Chemical Engineering. es
dc.description.abstract Here we report the enhanced light penetration and mass transfer efficiency of photocatalytic foams to convert CO2 to CO. The viability of utilizing a metallic foam as a model photocatalyst support is used to evaluate the photochemical and thermochemical reverse water gas shift reaction catalyzed by photoactive indium oxide hydroxide nanorods uniformly coated on nickel foams. A light-enhanced CO production rate up to 130% higher than the dark CO production was achieved through enhanced light penetration. A remarkably high thermo- chemical CO production rate of 0.75 mmol gcat 1 h 1 was achieved at 295 ◦C. Whilst several approaches to optimization of photocatalyst morphology at the nanoscale have been successful in extending electron hole-pair lifetime and modifying the site of reactions, these advantages cannot be significantly realized unless microscale to macroscale structuring efforts, that shorten the path length for diffusion of the reactant gas molecule and lengthen photon penetration to these catalytic sites are integrated. The superior catalytic performance of the indium oxide hydroxide nanorods on an optimized coated foam configuration compared to the performance of packed bed and thin film configurations demonstrates the critical importance of using structured supports in scale up of future photocatalytic processes es
dc.language.iso eng es
dc.publisher Chemical Engineering Journal es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc/4.0 es
dc.subject CO2 REDUCTION es
dc.subject Solar reverse water-gas shift es
dc.subject Defected indium oxide hydroxide es
dc.subject Metallic foams es
dc.subject Hybrid photocatalysis es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Solar CO2 hydrogenation by photocatalytic foams es
dc.title.alternative Hidrogenación de CO2 con luz solar mediante espumas fotocatalíticas es
dc.type Artículo es
dc.provenance Científica es
dc.road Verde es
dc.ambito Internacional es
dc.cve.CenCos 20403 es
dc.relation.vol 435


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Solar CO2 hydrogenation by photocatalytic foams
  • Autor
  • Hurtado, Lourdes
  • Mohan, Abhinav
  • Ulmer, Ulrich
  • Natividad, Reyna
  • Tountas, Athanasios
  • Sun, Wei
  • Wang, Lu
  • Kim, Boeun
  • Sain, Mohini
  • Ozin, Geoffrey
  • Fecha de publicación
  • 2022-01-30
  • Editor
  • Chemical Engineering Journal
  • Tipo de documento
  • Artículo
  • Palabras clave
  • CO2 REDUCTION
  • Solar reverse water-gas shift
  • Defected indium oxide hydroxide
  • Metallic foams
  • Hybrid photocatalysis
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas