Mostrar el registro sencillo del objeto digital

dc.contributor.author Cervantes Canales, Jair
dc.contributor.author García Lamont, Farid
dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author RUIZ CASTILLA, JOSE SERGIO
dc.creator Cervantes Canales, Jair; 101829
dc.creator García Lamont, Farid; 216477
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator RUIZ CASTILLA, JOSE SERGIO; 231221
dc.date.accessioned 2016-05-11T16:05:16Z
dc.date.available 2016-05-11T16:05:16Z
dc.date.issued 2015
dc.identifier.isbn 978-3-319-22179-3
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/20.500.11799/41186
dc.description.abstract In this paper we present a comparison between three color characterizations methods applied for fruit recognition, two of them are selected from two related works and the third is the authors’ proposal; in the three works, color is represented in the RGB space. The related works characterize the colors considering their intensity data; but employing the intensity data of colors in the RGB space may lead to obtain imprecise models of colors, because, in this space, despite two colors with the same chromaticity if they have different intensities then they represent different colors. Hence, we introduce a method to characterize the color of objects by extracting the chromaticity of colors; so, the intensity of colors does not influence significantly the color extraction. The color characterizations of these two methods and our proposal are implemented and tested to extract the color features of different fruit classes. The color features are concatenated with the shape characteristics, obtained using Fourier descriptors, Hu moments and four basic geometric features, to form a feature vector. A feed-forward neural network is employed as classifier; the performance of each method is evaluated using an image database with 12 fruit classes. es
dc.language.iso eng es
dc.publisher Springer es
dc.relation.ispartofseries 10.1007/978-3-319-22180-9_26;
dc.rights openAccess
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject Color characterization es
dc.subject Fruit classification es
dc.subject RGB images es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Color characterization comparison for machine vision-based fruit recognition es
dc.type Capítulo de Libro
dc.provenance Científica
dc.road Verde
dc.ambito Internacional es
dc.audience students
dc.audience researchers
dc.type.conacyt bookPart
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Color characterization comparison for machine vision-based fruit recognition
  • Autor
  • Cervantes Canales, Jair
  • García Lamont, Farid
  • LOPEZ CHAU, ASDRUBAL
  • RUIZ CASTILLA, JOSE SERGIO
  • Fecha de publicación
  • 2015
  • Editor
  • Springer
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Color characterization
  • Fruit classification
  • RGB images
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas