Mostrar el registro sencillo del objeto digital

dc.contributor.author Cervantes Canales, Jair
dc.contributor.author García Lamont, Farid
dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.creator Cervantes Canales, Jair; 101829
dc.creator García Lamont, Farid; 216477
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.date.accessioned 2016-05-11T16:14:29Z
dc.date.available 2016-05-11T16:14:29Z
dc.date.issued 2015
dc.identifier.isbn 978-3-319-22052-9
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/20.500.11799/41187
dc.description.abstract Classification methods usually exhibit a poor performance when they are applied on imbalanced data sets. In order to overcome this problem, some algorithms have been proposed in the last decade. Most of them generate synthetic instances in order to balance data sets, regardless the classification algorithm. These methods work reasonably well in most cases; however, they tend to cause over-fitting. In this paper, we propose a method to face the imbalance problem. Our approach, which is very simple to implement, works in two phases; the first one detects instances that are difficult to predict correctly for classification methods. These instances are then categorized into “noisy” and “secure”, where the former refers to those instances whose most of their nearest neighbors belong to the opposite class. The second phase of our method, consists in generating a number of synthetic instances for each one of those that are difficult to predict correctly. After applying our method to data sets, the AUC area of classifiers is improved dramatically. We compare our method with others of the state-of-the-art, using more than 10 data sets. es
dc.language.iso eng es
dc.publisher Springer es
dc.relation.ispartofseries 10.1007/978-3-319-22053-6_8;
dc.rights openAccess
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject Imbalanced es
dc.subject Classification es
dc.subject Synthetic instances es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Classification on imbalanced data sets, taking advantage of errors to improve performance es
dc.type Capítulo de Libro
dc.provenance Científica
dc.road Verde
dc.ambito Internacional es
dc.audience students
dc.audience researchers
dc.type.conacyt bookPart
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Classification on imbalanced data sets, taking advantage of errors to improve performance
  • Autor
  • Cervantes Canales, Jair
  • García Lamont, Farid
  • LOPEZ CHAU, ASDRUBAL
  • Fecha de publicación
  • 2015
  • Editor
  • Springer
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Imbalanced
  • Classification
  • Synthetic instances
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas