Mostrar el registro sencillo del objeto digital

dc.contributor Vázquez Chagoyán, Juan Carlos
dc.contributor Barbabosa Pliego, Alberto
dc.contributor Tenorio Borroto, Esvieta
dc.contributor.author Martínez Arzate, Saul Gabriel
dc.contributor.author Tenorio Borroto, Esvieta
dc.contributor.author Barbabosa Pliego, Alberto
dc.contributor.author Díaz Albiter, Hector Manuel
dc.contributor.author Vázquez Chagoyán, Juan Carlos
dc.contributor.author González Díaz, Humberto
dc.date.accessioned 2018-03-09T05:04:44Z
dc.date.available 2018-03-09T05:04:44Z
dc.date.issued 2017-09-18
dc.identifier.issn 1535-3907
dc.identifier.uri http://hdl.handle.net/20.500.11799/79781
dc.description.abstract In this work, we developed a general Perturbation Theory and Machine Learning (PTML) method for data mining of proteomes in order to discover new B-cell epitopes useful for vaccine design. The method predicts the epitope activity εq(cqj) of one query peptide (q-peptide) in a set of experimental query conditions (cqj). The method uses as input the sequence of the q-peptide. The method also uses as input information about the sequence and epitope activity εr(crj) of a peptide of reference (r-peptide) assayed on similar experimental conditions (crj). The model proposed here is able to classify 1,048,190 pairs of query and reference peptide sequences from the proteome of many organisms reported on IEDB database. These pairs have variations (perturbations) in sequence or assay conditions. The model has accuracy, sensitivity, and specificity between 71% and 80% for training and external validation series. The retrieved information contains structural changes in 83683 peptides sequences (Seq) determined in experimental assays with boundary conditions involving 1448 Epitope Organisms (Org), 323 Host Organisms (Host), 15 types of In vivo Process (Proc), 28 Experimental Techniques (Tech), and 505 Adjuvant additives (Adj). Afterwards, we reported the experimental sampling, isolation, and sequencing of 15 complete sequences of Bm86 gene from state of Colima, Mexico. Last, we used the model to predict the epitope immunogenic scores in different experimental conditions for the 26112 peptides obtained from these sequences. The model may become a useful tool for epitope selection towards vaccine design. The theoretic-experimental results on Bm86 protein may help on the future design of a new vaccine based on this protein. es
dc.description.sponsorship FESE: Reg UAEM: 3378/2013E UAEM Reg Num: 3775/2014/CIC es
dc.language.iso eng es
dc.publisher Journal of Proteome Research es
dc.relation.ispartofseries DOI;10.1021/acs.jproteome.7b00477
dc.rights restrictedAccess es
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/ es
dc.rights restrictedAccess es
dc.rights https://creativecommons.org/licenses/by-nc-nd/4.0/ es
dc.subject Proteome mining es
dc.subject Epitope prediction es
dc.subject B-cell epitope es
dc.subject PCR es
dc.subject Bm86 protein es
dc.subject Mavhine learning es
dc.subject Perturbation Theory es
dc.title PTML Model for proteom Mining of B-cell Epitopes and Theoretic-Experimental Study of Bm86 Sequences from Colima Mexico es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Medicina Veterinaria y Zootecnia es
dc.ambito Internacional es
dc.cve.CenCos 21401 es
dc.cve.progEstudios 2 es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • PTML Model for proteom Mining of B-cell Epitopes and Theoretic-Experimental Study of Bm86 Sequences from Colima Mexico
  • Autor
  • Martínez Arzate, Saul Gabriel
  • Tenorio Borroto, Esvieta
  • Barbabosa Pliego, Alberto
  • Díaz Albiter, Hector Manuel
  • Vázquez Chagoyán, Juan Carlos
  • González Díaz, Humberto
  • Director(es) de tesis, compilador(es) o coordinador(es)
  • Vázquez Chagoyán, Juan Carlos
  • Barbabosa Pliego, Alberto
  • Tenorio Borroto, Esvieta
  • Fecha de publicación
  • 2017-09-18
  • Editor
  • Journal of Proteome Research
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Proteome mining
  • Epitope prediction
  • B-cell epitope
  • PCR
  • Bm86 protein
  • Mavhine learning
  • Perturbation Theory
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

Buscar en RI


Buscar en RI

Usuario

Estadísticas